

We Made It! Now What?

City of LA—Tracing the Steps from Compliance Through Post-Implementation

Dawn Petschauer CASQA 2017

...Regulated?

Watersheds (City area only)

Upper Los Angeles River

o 180,153 acres

Ballona Creek

o 68,582 acres

Dominguez Channel

o 19,244 acres

Santa Monica Bay

o 19,935 acres

Marina del Rey

o 974 acres

Trash TMDL **Compliance Requirements** PERCENT REDUCTION 2002 2005 2006 2008 2011 2012 2015 2016 2020 **Los Angeles River** Machado **Santa Monica** Start Start Start **Ballona Creek** Lake Bay **Effective Effective Effective** Jul. 28 Mar. 6 Mar. 20 10% every year 20% every year thereafter thereafter

Trash TMDL Overview

- **♦ Compliance Pathway**
- **♦** Post-Implementation
- ♦ Program Challenges

Strategy

Generation Hot Spot

Study defined areas of City by Trash Generation
 Rate:

High

>14 cf/ac

o Medium

5-14 cf/ac

o Low

<5 cf/ac

- Full Capture systems installed in high trash generating areas
- Partial Capture systems installed in medium and low trash generating areas

Catch Basin Evolution

Fixed

Self opening (magnet)

Self opening (water flow)

Insert Evolution

Hanging basket

Horizontal

Vertical

Structural

Catch basin inserts

Catch basin opening screens

Hydrodynamic devices

Netting systems

Institutional Controls

- Catch basin maintenance
- Street sweeping

- Public outreach
- Trash receptacles

Institutional Quantification Study

SITE	LAND USE	TRASH GENERATION RATE	LGR (GAL/AC)	LGR PER LAND USE (GAL/AC)
1	Open Space	Medium	2.09	2.62
2	Open Space	Low	5.16	3.62
3	Low Density Residential	Medium	3.26	4.00
4	Low Density Residential	Low	0.51	1.88
5	Commercial	Medium	42.22	22.40
6	Commercial	Low	2.74	22.48
7	Industrial	Medium	26.68	44.54
8	Industrial	Low	2.39	14.54
9	High Density Residential	Medium	6.52	2.05
10	High Density Residential	Low	1.18	3.85

Litter Generation Rate (LGR)

DESCRIPTION	UNIT	HDSFR	LDSFR	COMMERCIAL	INDUSTRIAL	PUBLIC FACILITIES	EDUCATIONAL INSTITUTIONS	MILITARY	TRANSPORTATIO N	MIXED URBAN	OPEN SPACE	AGRICULTURE	WATER	RECREATION	TOTAL
Los Angeles – Land Use Area*	mi²	146.95	6.86	17.04	16.81	8.83	7.72	0.13	11.66	2.16	45.85	2.61	5.11	9.77	281.5
Los Angeles – Land Use Area	ac	94,048	4,390	10,906	10,758	5,651	4,941	83	7,462	1,382	29,344	1,670	3,270	6,253	180,158
Los Angeles – Baseline Report WLA**	gal	523,851	13,302	161,072	164,951	86,603	72,974	0	114,426	21,170	170,494	9,692	0	36,310	1,374,845
Los Angeles – Study Results	gal	361,849	8,270	245,166	156,412	82,160	71,838	0	108,491	20,093	106,310	6,050	0	22,654	1,189,293

^{*} Source: TMDL Baseline Report, Appendix I

^{**} Source: TMDL Baseline Report, Appendix II

Trash TMDL Overview

- **♦ Compliance Pathway**
- **♦** Post-Implementation
- ♦ Program Challenges

Catch Basin BMPs

Phase	Start / End	Funding (co	nstruction)	Retrofits			
Filase	Start / Lifu	Budget	Actual	Inserts	Covers		
I	2005 / 2007	\$14.9M	\$14.2M	7,620	6,500		
II	2006 / 2007	\$9.4M	\$9.2M	0	7,800		
III	2008 / 2011	\$41M	\$36.9M	1,500	26,000		
IV	2017 / 2020	\$2.3M		~2600			

Trash TMDL New Technologies

- o <u>Hydra Gate</u>
- Fixed plastic "fingers"
- Easier/cost-effective installations
- Rated 92% Effective (1yr, 1hr storm)

Plastic Pellet Monitoring and Reporting Plans (PMRPs)

- <5mm not captured by CB/Inserts</p>
- Quantify discharges to receiving waters
- Provide supplemental Spill Response Plan (SRP)
- 200 Facilities LA River; 8 Verified

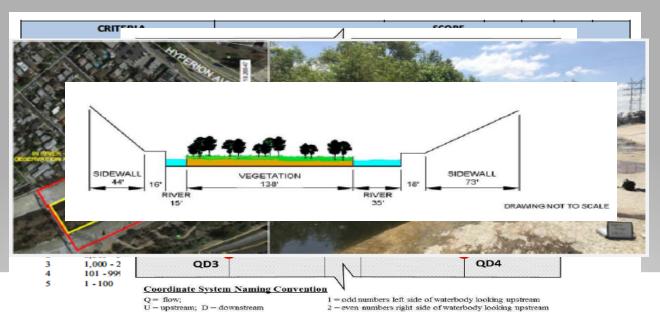
Order 13383

- Requires compliance for <u>all</u> 303(d) listed waters
- <u>Dominguez Channel</u>—Retrofitted with partial capture screens (2016)

Trash Monitoring Reporting Program (TMRP)

- Requires Receiving Water Monitoring for Compliance (ULAR/BC)
- Phase I (Pilot Study June 2016) Developed Alternative Field Protocol
- Phase II (Field Oct 2016)—LA River/Ballona Creek Watersheds (TMRP)

Rapid


Customized

Quantifiable

Source Inputs

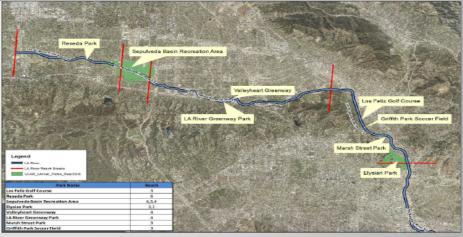
Standardization Criteria

CITY OF LOS ANGELES

SANITATION
DEPARTMENT OF
PUBLIC WORKS

Observation Protocols

- <u>High Elevation Point (HEPO)</u>—visual survey of trash impacts in river/river banks
- <u>In-River (IRO)</u>—included velocity and suspended trash monitoring elements
- Quantifiable Metrics
 - Abundance
 - Mass Loading
 - Trash Library


Alternative Protocol vs. SWAMP

Protocol	Stream Type	Length (ft) Monitored	Documentation	River Banks	Characterization	Fixed Site	Measure Flow	Suspended Trash Collection	Trash Collection
SWAMP	Wadeable	100	Record, photo	Y	Y	N	N	N	Y
IRO	Wadeable	300	Record, extensive photo documentation	Y	Y	Y*	Y	Y	Y
НЕРО	Inaccessible	300	Record, extensive photo documentation	¥	Y	¥	z	z	¥

Minimum Frequency Assessment and Collection (MFAC)

- Required for River-adjacent Parks (ULAR/BC)
- Consistency among visual surveying methods
- Cost-effective solution for large watershed monitoring

Trash TMDL Overview

- **♦ Compliance Pathway**
- **♦** Post-Implementation
- ♦ Program Challenges

Fiscal Considerations

53K

8

9

2.6K

Screens/Inserts

Netting Systems

Hydrodynamic/Combo Devices

Replacement Program

Implementation Cost >\$82M

Additional Considerations

- On-going Programs Costs
 - Annual O & M (~\$1M)
 - Replacement Program (~\$2.3M)
- Site/Urban Constraints
- Evolving Technologies
- O New Regulations...?

Closing Remarks

- City of LA's implementation strategy has been successful—though many lessons learned
- City of LA's CB insert received Regional Water Quality Control Board's "Full Capture Certification" and newer technologies still being explored
- City continues to look for new revenue sources to fund ongoing costs and requirements

